Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Correlation between sprayed CuInSe2 thin films properties and deposition temperature : Solar Energy Generation and Energy Storage

Identifieur interne : 000F93 ( Main/Repository ); précédent : 000F92; suivant : 000F94

Correlation between sprayed CuInSe2 thin films properties and deposition temperature : Solar Energy Generation and Energy Storage

Auteurs : RBID : Pascal:13-0270063

Descripteurs français

English descriptors

Abstract

Copper indium diselenide thin films were prepared by spray pyrolysis technique on glass substrates at different deposition temperatures ranging from 150 to 300 °C. XRD patterns of sprayed CuInSe2 films showed that all films are polycrystalline with a chalcopyrite structure and a preferential orientation along the (112) direction. The chemical composition analysis showed that the Cu/In ratio increased with increasing the deposition temperature. The atomic force micrographs show that the elaborated films have a uniform surface morphology with a homogeneous distribution of crystallites. The electrical conductivity of the prepared films increased with increasing the deposition temperature. The energy band gap of prepared films decreased with increasing Cu/In ratio.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0270063

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Correlation between sprayed CuInSe
<sub>2</sub>
thin films properties and deposition temperature : Solar Energy Generation and Energy Storage</title>
<author>
<name sortKey="Mahmoud, F A" uniqKey="Mahmoud F">F. A. Mahmoud</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Renewable Energy Group, Center of Excellence for Advanced Sciences, National Research Center</s1>
<s2>Dokki, Giza 12311</s2>
<s3>EGY</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Égypte</country>
<wicri:noRegion>Dokki, Giza 12311</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Boshta, M" uniqKey="Boshta M">M. Boshta</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Solid State Physics Department, National Research Center</s1>
<s2>Dokki, Giza 12311</s2>
<s3>EGY</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Égypte</country>
<wicri:noRegion>Dokki, Giza 12311</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Renewable Energy Group, Center of Excellence for Advanced Sciences, National Research Center</s1>
<s2>Dokki, Giza 12311</s2>
<s3>EGY</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Égypte</country>
<wicri:noRegion>Dokki, Giza 12311</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sayed, M H" uniqKey="Sayed M">M. H. Sayed</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Solid State Physics Department, National Research Center</s1>
<s2>Dokki, Giza 12311</s2>
<s3>EGY</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Égypte</country>
<wicri:noRegion>Dokki, Giza 12311</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Renewable Energy Group, Center of Excellence for Advanced Sciences, National Research Center</s1>
<s2>Dokki, Giza 12311</s2>
<s3>EGY</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Égypte</country>
<wicri:noRegion>Dokki, Giza 12311</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0270063</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0270063 INIST</idno>
<idno type="RBID">Pascal:13-0270063</idno>
<idno type="wicri:Area/Main/Corpus">000933</idno>
<idno type="wicri:Area/Main/Repository">000F93</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0957-4522</idno>
<title level="j" type="abbreviated">J. mater. sci., Mater. electron.</title>
<title level="j" type="main">Journal of materials science. Materials in electronics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chalcopyrite structure</term>
<term>Chemical analysis</term>
<term>Chemical composition</term>
<term>Copper</term>
<term>Copper selenides</term>
<term>Crystallites</term>
<term>Electrical conductivity</term>
<term>Energy gap</term>
<term>Glass</term>
<term>Indium selenides</term>
<term>Interatomic forces</term>
<term>Polycrystal</term>
<term>Preferred orientation</term>
<term>Spray coating</term>
<term>Spray pyrolysis</term>
<term>Surface morphology</term>
<term>Surface structure</term>
<term>Ternary compound</term>
<term>Thin film</term>
<term>X ray diffraction</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dépôt projection</term>
<term>Diffraction RX</term>
<term>Polycristal</term>
<term>Orientation préférentielle</term>
<term>Composition chimique</term>
<term>Analyse chimique</term>
<term>Force interatomique</term>
<term>Morphologie surface</term>
<term>Structure surface</term>
<term>Cristallite</term>
<term>Conductivité électrique</term>
<term>Bande interdite</term>
<term>Composé ternaire</term>
<term>Séléniure de cuivre</term>
<term>Séléniure d'indium</term>
<term>Couche mince</term>
<term>Verre</term>
<term>Structure chalcopyrite</term>
<term>Cuivre</term>
<term>8105K</term>
<term>7363</term>
<term>CuInSe2</term>
<term>Pyrolyse par projection</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Verre</term>
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Copper indium diselenide thin films were prepared by spray pyrolysis technique on glass substrates at different deposition temperatures ranging from 150 to 300 °C. XRD patterns of sprayed CuInSe
<sub>2</sub>
films showed that all films are polycrystalline with a chalcopyrite structure and a preferential orientation along the (112) direction. The chemical composition analysis showed that the Cu/In ratio increased with increasing the deposition temperature. The atomic force micrographs show that the elaborated films have a uniform surface morphology with a homogeneous distribution of crystallites. The electrical conductivity of the prepared films increased with increasing the deposition temperature. The energy band gap of prepared films decreased with increasing Cu/In ratio.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4522</s0>
</fA01>
<fA03 i2="1">
<s0>J. mater. sci., Mater. electron.</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Correlation between sprayed CuInSe
<sub>2</sub>
thin films properties and deposition temperature : Solar Energy Generation and Energy Storage</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MAHMOUD (F. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BOSHTA (M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SAYED (M. H.)</s1>
</fA11>
<fA14 i1="01">
<s1>Solid State Physics Department, National Research Center</s1>
<s2>Dokki, Giza 12311</s2>
<s3>EGY</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Renewable Energy Group, Center of Excellence for Advanced Sciences, National Research Center</s1>
<s2>Dokki, Giza 12311</s2>
<s3>EGY</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>448-451</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22352</s2>
<s5>354000503651630030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>19 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0270063</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of materials science. Materials in electronics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Copper indium diselenide thin films were prepared by spray pyrolysis technique on glass substrates at different deposition temperatures ranging from 150 to 300 °C. XRD patterns of sprayed CuInSe
<sub>2</sub>
films showed that all films are polycrystalline with a chalcopyrite structure and a preferential orientation along the (112) direction. The chemical composition analysis showed that the Cu/In ratio increased with increasing the deposition temperature. The atomic force micrographs show that the elaborated films have a uniform surface morphology with a homogeneous distribution of crystallites. The electrical conductivity of the prepared films increased with increasing the deposition temperature. The energy band gap of prepared films decreased with increasing Cu/In ratio.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03C</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D11C06</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A15R</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60H35B</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>240</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Dépôt projection</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Spray coating</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="GER">
<s0>Spritzbeschichten</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Depósito proyección</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Diffraction RX</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>X ray diffraction</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="GER">
<s0>Roentgenbeugung</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Difracción RX</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Polycristal</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Polycrystal</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="GER">
<s0>Polykristall</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Policristal</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Orientation préférentielle</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Preferred orientation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="GER">
<s0>Bevorzugte Orientierung</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Orientación preferencial</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Composition chimique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Chemical composition</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="GER">
<s0>Chemische Zusammensetzung</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Composición química</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Analyse chimique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Chemical analysis</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="GER">
<s0>Chemische Analyse</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Análisis químico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Force interatomique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Interatomic forces</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Morphologie surface</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Surface morphology</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Structure surface</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Surface structure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="GER">
<s0>Oberflaechenbeschaffenheit</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Estructura superficie</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Cristallite</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Crystallites</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="GER">
<s0>Kristallit</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Cristalita</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Conductivité électrique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Electrical conductivity</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="GER">
<s0>Elektrische Leitfaehigkeit</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Conductividad eléctrica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Bande interdite</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Energy gap</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="GER">
<s0>Energieluecke</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Banda prohibida</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="GER">
<s0>Duennschicht</s0>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Verre</s0>
<s5>26</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Glass</s0>
<s5>26</s5>
</fC03>
<fC03 i1="17" i2="X" l="GER">
<s0>Glas</s0>
<s5>26</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Vidrio</s0>
<s5>26</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Structure chalcopyrite</s0>
<s5>27</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Chalcopyrite structure</s0>
<s5>27</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Estructura calcopirita</s0>
<s5>27</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>28</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>28</s5>
</fC03>
<fC03 i1="19" i2="X" l="GER">
<s0>Kupfer</s0>
<s2>NC</s2>
<s5>28</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Cobre</s0>
<s2>NC</s2>
<s5>28</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>8105K</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>7363</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>CuInSe2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Pyrolyse par projection</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Spray pyrolysis</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>259</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F93 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000F93 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0270063
   |texte=   Correlation between sprayed CuInSe2 thin films properties and deposition temperature : Solar Energy Generation and Energy Storage
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024